An inversion theorem for set-valued maps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Inverse Mapping Theorem for Set-valued Maps

We prove that certain Lipschitz properties of the inverse F-1 of a set-valued map F are inherited by the map (f+F)~x when / has vanishing strict derivative. In this paper, we present an inverse mapping theorem for set-valued maps F acting from a complete metric space I toa linear space Y with a (translation) invariant metric. We prove that, for any function f: X -> Y with "vanishing strict deri...

متن کامل

Structure of the Fixed Point of Condensing Set-Valued Maps

In this paper, we present structure of the fixed point set results for condensing set-valued map. Also, we prove a generalization of the Krasnosel'skii-Perov connectedness principle to the case of condensing set-valued maps.

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

An Index for Set-valued Maps in Infinite- Dimensional Spaces

Previous fixed point indexes defined for a set-valued map in an infinite-dimensional space have required the values of this map to be convex sets. The corresponding assumption of this paper is that the values be (co-)acyclic sets, i.e., that the reduced Alexander cohomology group of each of these sets be trivial in each dimension. Other assumptions are that the space is locally convex and that ...

متن کامل

Generalized Convex Set-Valued Maps

The aim of this paper is to show that under a mild semicontinuity assumption (the so-called segmentary epi-closedness), the cone-convex (resp. cone-quasiconvex) set-valued maps can be characterized in terms of weak cone-convexity (resp. weak cone-quasiconvexity), i.e. the notions obtained by replacing in the classical definitions the conditions of type ”for all x, y in the domain and for all t ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1988

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700027027